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Peatlands cover just 3% of Earth’s land surface1, yet store an 
estimated 600 Pg carbon (PgC)2,3, approximately one-third of 
Earth’s soil carbon4. While most peatlands are located in the 

temperate and boreal zones1, recent research is revealing the exis-
tence of tropical peatlands with high carbon densities1,2,5,6. Tropical 
peatlands are vulnerable to drainage and drying, with subsequent 
fires resulting in large carbon emissions from degraded peatlands, 
particularly in Southeast Asia3,5,6–8.

In the central depression of the Congo Basin (the ‘Cuvette 
Centrale’), the only field-verified peatland map to date reported 
that peat underlies 145,500 km2 of swamp forests, making this the 
world’s largest tropical peatland complex9. The field data used in 
this estimate are from northern Republic of the Congo (ROC), yet 
two-thirds of the central Congo Basin peatlands are predicted to be 
found in neighbouring Democratic Republic of the Congo (DRC)9, 
sometimes hundreds of kilometres from existing field data (Fig. 1a). 

Similarly, peat carbon stocks are estimated to be 30.6 PgC, but the 
lower confidence interval is just 6 PgC (ref. 9). Thus, it is unclear 
whether the central Congo peatlands are truly as extensive or deep 
as suggested, and it is unclear whether they store globally significant 
quantities of carbon.

Uncertainties are further compounded by a limited under-
standing of the processes that determine peat formation in central 
Congo, particularly hydrology9,10. Peat has been systematically doc-
umented only in interfluvial basins in ROC9,11, where an absence 
of annual flood waves9, modest domes12 and remotely sensed 
water-table depths13 all suggest peatlands are largely rain-fed and 
receive little river-water input. However, peat is also predicted in 
other hydro-geomorphological settings9, including what appear to 
be river-influenced regions close to the Congo River mainstem and 
dendritic-patterned valley floors along some of its left-bank tribu-
taries9 (Fig. 1a). These areas of swamp forest are probably seasonally 
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inundated14 to depths up to 1.5 m during the main wet season15, sug-
gesting seasonal river flooding and/or upland run-off as key sources 
of water. Whether peat accumulates under these river-influenced 
conditions is currently unknown.

In this Article, we present new in situ data on peat pres-
ence, thickness and carbon density (mass per unit area) from 
the central Congo Basin in DRC. We specifically investigated the 
river-influenced swamp forests along the Congo River and its Ruki, 
Busira and Ikelemba tributaries in contrast to previous data collec-
tion from interfluvial basins9 (Fig. 1a). Every 250 m along 18 tran-
sects, we recorded vegetation characteristics, peat presence and 
peat thickness. We targeted a first group of ten transects in loca-
tions highly likely to contain peat, to help test hypotheses (detailed 
in Supplementary Table 1) about the role of vegetation, surface 
wetness, nutrient status and topography in peat accumulation. To 
improve mapping capabilities, we sampled a second group of eight 
transects specifically to test preliminary maps that gave conflict-
ing results or suspected false predictions of peat presence (detailed 
in Supplementary Table 1). We combine these new field measure-
ments from DRC with previous transect records in ROC using the 
same protocols9 and other ground-truth data (Supplementary Table 
2) to produce (1) a second-generation map of peatland extent, (2) 
a first-generation map of peat thickness and (3) a first-generation 
map of below-ground peat carbon density for the central Congo 
Basin. These maps enable us to compute the first well-constrained 
estimate of total below-ground peat carbon stocks in the world’s 
largest tropical peatland complex.

Mapping peatland extent
We found peat along all ten hypothesis-testing transects in DRC 
that were predicted to be peatlands9. Our new field data show that 
extensive carbon-rich peatlands are present in the forested wet-
lands of the DRC’s Cuvette Centrale, including in geomorpho-
logically distinct river-influenced regions predicted as peatlands  
by ref. 9.

The best-performing algorithm to map the peatlands was the 
maximum likelihood (ML) classifier, because of its ability to most 
accurately predict in regions with no training data (Methods). 
ML was run 1,000 times on nine remotely sensed datasets using 
a random two-thirds of 1,736 ground-truth data points each time 
(Extended Data Fig. 1), giving a median total peatland area for the 
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land-cover classes across the central Congo Basin from this study as the most likely class per pixel (>50%), using a legend identical to ref. 9 to facilitate 
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central Congo Basin of 167,600 km2 (95% confidence interval (CI), 
159,400–175,100 km2). This is 15% higher than the previous esti-
mate9. We found that 90% of all pixels that are predicted as peat 
in the median map result were predicted as peat in at least 950 out 
of 1,000 runs (that is, with ≥ 95% probability, either as hardwood- 
or palm-dominated peat swamp forest; Fig. 1b), showing that peat 
predictions are consistent across model runs and thus are robust. 
Overall model performance, using the Matthews correlation coef-
ficient (MCC), is 78.0% (95% CI, 74.2–81.6%).

Comparing our field results with the original first-generation 
map9 shows that of the 382 locations assessed across DRC, 77.7% 
were correctly classified as either being peat swamp or not by 
the first-generation map9. Comparing our new map with the 
first-generation map9 shows large areas of agreement (white in  
Fig. 2). However, we predict areas of peat that were previously not 
mapped9, particularly around Lake Mai-Ndombe and the Ngiri 
and upper Congo/Lulonga rivers in DRC (red in Fig. 2). In addi-
tion, small areas of previously predicted peat deposits9 are no lon-
ger predicted by our new model, particularly along the Sangha and 
Likouala-Mossaka rivers in ROC (blue in Fig. 2). These areas of dif-
ference are probably areas of high uncertainty and should therefore 
be priorities for future fieldwork.

More formally, we compare our new second-generation map with 
the original map9 using balanced accuracy (BA), which is similar to 
MCC but better suited for comparison across different datasets16. 
For our new map, median BA is 91.9% (95% CI, 90.2–93.6%), com-
pared with 89.8% (86.0–93.4%) for the first-generation map9. The 
substantially smaller BA interval indicates improved confidence in 
our new peatland map, despite only a small increase in median BA. 
This is probably due to the effect of our larger sample size being 
partly offset by an increase in its spatial extent and ecological diver-
sity, particularly data from the Congo River region, where all algo-
rithms that we tested are underperforming (Supplementary Table 3). 
Overall, our in situ data from DRC, including from river-influenced 
settings that are being reported for the first time, confirm the cen-
tral Congo Basin peatlands as the world’s largest tropical peatland 
complex, and that DRC and ROC are the second and third most 
important countries in the tropics for peatland area after Indonesia1, 
respectively (Extended Data Fig. 2).

Mapping peat thickness and carbon density
We measured peat thickness at 238 locations in DRC (including 59 
laboratory-verified measurements; Extended Data Fig. 3), finding 
a mean (±s.d.) thickness of 2.4 (±1.6) m and a maximum of 6.4 m. 
This shows that river-influenced peatlands can attain similar peat 
thickness as rain-fed interfluvial basins reported in ROC9 (Table 1). 
There is no uniform increase in peat thickness with distance from 
the peatland margin (Extended Data Fig. 4), with linear regres-
sion being only a modest fit (R2 = 41.0%; root-mean-square error 
(RMSE) = 1.21 m). Thus, we developed a random forest (RF) regres-
sion to estimate peat thickness, using 463 thickness measurements 
across both countries. Our final RF model includes four predic-
tors after variable selection (Methods): distance from the peatland 
margin, precipitation seasonality, climatic water balance (precipi-
tation minus potential evapotranspiration) and distance from the 
nearest drainage point (R2 = 93.4%; RMSE = 0.42 m). The RF model 
outperforms multiple linear regression with interactions using the  
same four variables (adjusted R2 = 73.6%, RMSE = 0.80 m; Extended 
Data Fig. 5).

Spatially, we predict thick peat deposits in the centres of the larg-
est interfluvial basins (far from peatland margins), and in smaller, 
river-influenced valley-floor peatlands along the Ruki/Busira rivers 
(Fig. 3a). The river valleys’ thick deposits are probably driven by 
greater climatic water balance and lower precipitation seasonality 
in the eastern part of the Cuvette Centrale region (Extended Data 
Fig. 6), plus potentially greater water inputs from nearby higher Ta
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ground, which offsets the shorter distances from peatland margins. 
Our modelled results are consistent with our field data, as the two 
deepest peat cores are from the interfluvial Centre transect in ROC 
(5.9 m) and the river-influenced Bondamba transect on the Busira 
River in DRC (6.4 m). Overall, mean (±s.d.) modelled peat thick-
ness (1.7 ± 0.9 m) is lower than our field measurements (2.4 ± 1.5 m; 
Table 1), as expected given our linear transects, which oversample 
deeper peat at the centre relative to the periphery in approximately 
ovoid peatlands. Areas of high uncertainty in peat thickness occur 
where distance from the margin is uncertain (Fig. 3b). Our results 
contrast strongly with an ‘expert system approach’ that assigned 

peat-thickness values on the basis of hydrological terrain relief 
alone and estimated a mean thickness of 6.5 ± 3.5 m for the central 
Congo Basin peatlands17, compared with our field-derived estimate 
of 1.7 ± 0.9 m (Fig. 3a).

After distance from the margin, precipitation seasonality and cli-
matic water balance are the most important predictors of peat thick-
ness in the RF model, reflecting the relative importance of rainfall 
inputs in peat accumulation in central Congo. This appears to dif-
fer from smaller-scale assessments in temperate18 or other tropical 
peatlands19, where surface topography (elevation and slope) are 
primary predictors of peat thickness. However, this is potentially 
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merely an artefact of the spatial scale of the studies, as climate var-
ies only over large scales. Alternatively, the relatively low rainfall in 
the central Congo Basin (~1,700 mm yr−1), compared with other 
tropical peatland regions (for example, ~2,500–3,000 mm yr−1 in 
Northwest Amazonia and Southeast Asia)9,20, may mean that peat 
thickness is more strongly related to climate in central Congo, as it 
implies greater exposure to (seasonal) drought conditions that may 
cross thresholds that negatively impact peat accumulation rates.

Peat bulk density measured across the central Congo Basin 
is 0.17 ± 0.06 g cm−3 (mean ± s.d.; n = 80 cores), and mean car-
bon concentration is 55.7 ± 3.2% (n = 80; 56.6 ± 4.5% for the 22 
well-sampled cores). While peat bulk density is significantly lower 
in largely river-influenced sites than in rain-fed interfluvial basins 
(P < 0.01), no significant difference between these peatland types is 
found for either peat carbon concentration or carbon density (mass 
per unit area; Table 1).

We used the peat-thickness, bulk density and carbon con-
centration measurements to construct a linear peat-thickness–
carbon-density regression (Extended Data Fig. 7). We applied this 
regression model to our peat-thickness map to spatially model 
carbon stocks per unit area (Fig. 4a). Modelled below-ground peat 
carbon density for the central Congo Basin is 1,712 ± 634 MgC ha−1, 
similar to the field-measured mean of 1,741 ± 1,186 MgC ha−1 
(mean ± s.d., n = 80; Table 1). This carbon density is approximately 
nine times the mean carbon stored in above-ground live tree bio-
mass of African tropical moist forests (~198 MgC ha−1)21. Compared 
with recently mapped peatlands in the lowland Peruvian Amazon 
(mean 867 MgC ha−1)22, the central Congo peatlands store almost 
twice as much carbon per hectare. Spatial patterns of peat carbon 
density (Fig. 4a) and uncertainty (Fig. 4b) follow similar patterns as 
peat thickness (Fig. 3a,b).

Estimating basin-wide peat carbon stocks
Median estimated total peat carbon stock in the central Congo Basin 
is 29.0 Pg (95% CI, 26.3–32.2; Extended Data Fig. 8a), based on 
bootstrapping the area estimate and peat-thickness–carbon-density 
regression. This is similar to the median 30.6 PgC reported by  
ref. 9., but their lower 95% CI was 6.3 Pg, which our study increases 
to 26.3 Pg. This constraint on the carbon-stock estimate is possible 
because our larger field-based dataset allows a spatial modelling 
approach so that we can sum carbon density across all peat pixels. 
Therefore, the possibility of low values of carbon storage in the cen-
tral Congo peatlands can now confidently be discarded.

Our new results show that the central Congo Basin peatlands 
are a globally important carbon stock. About two-thirds of this 
peat carbon is in DRC (19.6 PgC; 95% CI, 17.9–21.9), and one-third 
in ROC (9.3 PgC; 95% CI, 8.4–10.2; Extended Data Fig. 2), which 
is equivalent to approximately 82% and 238% of each country’s 
above-ground forest carbon stock, respectively23. The high peat 
carbon stocks are found across several administrative regions in 
both countries, with the largest stocks in DRC’s Équateur province 
(Extended Data Fig. 2). Sensitivity analysis shows that uncertainty 
in total peat carbon stock is now driven mostly by uncertainty in 
peatland area (Extended Data Fig. 8b).

Because the central Congo peatlands are relatively undis-
turbed24,25, our new maps of peatland extent, thickness and car-
bon density form a baseline description for the decade 2000–2010, 
given the remotely sensed data used. Today the peatlands of the 
central Congo Basin are threatened by hydrocarbon exploration, 
logging, palm oil plantations, hydroelectric dams and climate 
change24,26. While the peatlands are largely within a UN Ramsar 
Convention transboundary wetland designation, we estimate that 
only 2.4 PgC in peat, just 8% of total stocks, currently lies within 
formal national-level protected areas (Extended Data Figs. 9  
and 10). Meanwhile, logging, mining or palm oil concessions 
together overlie 7.4 PgC in peat, or 26% of total stocks (Extended 

Data Figs. 9 and 10), while hydrocarbon concessions cover almost 
the entire peatland complex24,26.

Our results show that the central Congo Basin peatlands cover 
approximately 36% of the world’s tropical peatland area, and store 
approximately 28% of the world’s tropical peat carbon5. Therefore, 
keeping the central Congo Basin peatlands wet is vital to prevent 
peat carbon being released to the atmosphere. The identification 
of extensive river-influenced peatlands suggests that there is more 
than one geomorphological setting where peat is found in the cen-
tral Congo Basin. Further work is required to understand both the 
sources and flows of water in these river-influenced peatlands, spe-
cifically the relative contributions of water from precipitation, riv-
erbank overflow and run-off from higher ground to peat formation 
and maintenance. Given the current areas of formal protection of 
peatlands are largely centred around interfluvial basins, we suggest 
that additional protective measures will be needed to safeguard the 
newly identified river-influenced peatlands of the central Congo 
Basin. Keeping the central Congo peatlands free from disturbance 
would also help protect the rich biodiversity, including forest ele-
phants, lowland gorillas, chimpanzees and bonobos24,27,28, that form 
part of this globally important but threatened ecosystem.
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Methods
Field-data collection. Fieldwork was conducted in DRC between January 2018 
and March 2020. Ten transects (4–11 km long) were installed, identical to the 
approach in ref. 9, in locations that were highly likely to be peatland. These were 
selected to help test hypotheses about the role of vegetation, surface wetness, 
nutrient status and topography in peat accumulation (Fig. 1a and Supplementary 
Table 1). A further eight transects (0.5–3 km long) were installed to assess our peat 
mapping capabilities (Fig. 1a and Supplementary Table 1).

Every 250 m along each transect, land cover was classified as one of six classes: 
water, savannah, terra firme forest, non-peat-forming seasonally inundated forest, 
hardwood-dominated peat swamp forest or palm-dominated peat swamp forest. 
Peat swamp forest was classified as palm dominated when >50% of the canopy, 
estimated by eye, was palms (commonly Raphia laurentii or Raphia sese). In 
addition, several ground-truth points were collected at locations in the vicinity of 
each transect from the clearly identifiable land-cover classes water, savannah and 
terra firme forest.

Peat presence/absence was recorded every 250 m along all transects, and peat 
thickness (if present) was measured by inserting metal poles into the ground until 
the poles were prevented from going any further by the underlying mineral layer, 
identical to the pole method of ref. 9. In addition, a core of the full peat profile was 
extracted every kilometre along the ten hypothesis-testing transects, if peat was 
present, with a Russian-type corer (52 mm stainless steel Eijkelkamp model); these 
63 cores were sealed in plastic for laboratory analysis.

Peat-thickness laboratory measurements. Peat was defined as having an organic 
matter (OM) content of ≥65% and a thickness of ≥0.3 m (sensu ref. 9). Therefore, 
down-core OM content of all 63 cores was analysed to measure peat thickness. The 
organic matter content of each 0.1-m-thick peat sample was estimated via loss on 
ignition (LOI), whereby samples were heated at 550 °C for 4 h. The mass fraction 
lost after heating was used as an estimate of total OM content (% of mass). Peat 
thickness was defined as the deepest 0.1 m with OM ≥ 65%, after which there is a 
transition to mineral soil. Samples below this depth were excluded from further 
analysis. Rare mineral intrusions into the peat layer above this depth, where 
OM < 65% for a sample within the peat column, were retained for further analysis. 
In total, 59 out of 63 collected cores had LOI-verified peat thickness ≥0.3 m.

The pole method used to estimate peat thickness in the field was calibrated 
against LOI-verified measurements by fitting a linear regression model between 
all LOI-verified and pole-method peat-thickness measurements sampled at 
the same location (93 sites across ROC and DRC, including 37 from ref. 9). 
Three measurements from DRC with a Cook’s distance >4× the mean Cook’s 
distance were excluded as influential outliers. Mean pole-method offset was 
significantly higher along the DRC transects (0.94 m) than along those in 
ROC (0.48 m; P < 0.001) due to the presence of softer alluvium substrate in 
river-influenced sites in DRC. We therefore added this grouping as a categorical 
variable to the regression. The resulting model (adjusted R2 = 0.95; P < 0.001; 
Extended Data Fig. 3) was used to correct all pole-method measurements in 
each group for which no LOI-verified thickness was available: corrected peat 
thickness = −0.1760 + 0.8626 × (pole-method thickness) – 0.3284 × (country), with 
country dummy coded as ROC (0) and DRC (1).

Carbon-density estimates. To calculate carbon density (mass per unit area), 
estimates of carbon storage in each 0.1-m-thick peat sample (thickness × bulk 
density × carbon concentration) were summed to provide an estimate of total 
carbon density per core (MgC ha−1), identical to ref. 9. We estimated carbon density 
for 80 peat cores (OM ≥ 65%, thickness ≥ 0.3 m), located every other kilometre 
along 18 transects, including 37 cores from the ten transects used for hypothesis 
testing in DRC and 43 cores from eight transects in ROC9.

Peat thickness of the 80 cores was obtained by laboratory LOI. To estimate peat 
bulk density, every other 0.1 m down-core, samples of a known peat volume were 
weighed after being dried for 24 h at 105 °C (n = 906). Bulk density (g cm−3) was 
then calculated by dividing the dry sample mass (g) by the volume of the sample 
taken from the peat corer dimensions (cm3). Within each core, linear interpolation 
was used to estimate bulk density for the alternate 0.1-m-thick samples of the core 
that were not measured.

For total carbon concentration (%), only the deepest core per transect, plus 
additional deep cores from the Lokolama transect (1) in DRC and Ekolongouma 
transect (3) in ROC (22 in total, 11 from DRC and 11 from ROC9) were sampled 
down-core. Every other 0.1-m-thick sample was measured using an elemental 
analyser (Elementar Vario MICRO Cube with thermal conductivity detection 
for all cores, except those from Boboka, Lobaka and Ipombo transects, which 
were analysed using Sercon ANCA GSL with isotope-ratio mass spectrometer 
detection, due to COVID-19 disruption). All samples (n = 422) were pre-dried for 
48 h at 40 °C and ground to <100 μm using an MM301 mixer mill. Again, linear 
interpolation was used within each core for the alternate samples that were  
not measured.

The remaining 58 cores had less-intensive carbon concentration sampling. 
We therefore interpolated the carbon concentration for each 0.1-m-thick sample 
because well-sampled cores show a consistent pattern with depth: an increase to 
a depth of about 0.5 m followed by a long, very weak decline and finally a strong 

decline over the deepest approximately 0.5 m of the core9. We used segmented 
regression on the 22 well-sampled cores (segmented package in R, version 1.3–1) to 
parameterize the three sections of the core, using the means of these relationships 
to interpolate carbon concentrations for the remaining 58 cores, following ref. 9.

To estimate carbon density from modelled peat thickness across the basin, we 
developed a regression model between peat thickness and per-unit-area carbon 
density using the 80 sampled cores. We compared linear regressions for normal, 
logarithmic- and square-root-transformed peat thickness, selecting the model with 
the lowest corrected Akaike information criterion (AICc) and highest R2. A linear 
model with square-root-transformed peat thickness was found to provide the best 
fit (R2 = 0.86; P < 0.001; Extended Data Fig. 7). Bootstrapping was applied (boot 
package in R, version 1.3–25) to assess uncertainty around the regression.

Modelling peatland extent. Satellites cannot detect peat directly. We therefore 
mapped vegetation and used field-based associations between peat and vegetation 
to infer peat presence9,29. Five land-cover classes were used for the purpose 
of peatland mapping: water, savannah, palm-dominated peat swamp forest, 
hardwood-dominated peat swamp forest and non-peat-forming forest. In this 
classification, field recordings of non-peat-forming seasonally inundated forest 
(<30 cm thickness of ≥65% OM) were grouped with field recordings of terra firme  
forest, which also does not form peat, to form the non-peat-forming forest class. 
Our field recordings of hardwood- or palm-dominated peat swamp forest, by 
definition, consist of all forest sites that form peat, including any seasonally 
inundated forest that forms peat (≥30 cm of ≥65% OM).

A total of 1,736 ground-truth data points were used: 172 in water, 476 in 
savannah, 632 in non-peat-forming forest (97 non-peat-forming seasonally 
inundated forest and 535 terra firme forest), 188 in palm-dominated peat swamp 
forest and 268 in hardwood-dominated peat swamp forest (Extended Data Fig. 1). 
These data come from eight sources (Supplementary Table 2): first, ground-truth 
locations collected for this study using a GPS (Garmin GPSMAP 64 s) at all 
transect sites in DRC for which a land-cover class was determined (382 points); 
second, published ground-truth data from nine transects in ROC (292 points)9; 
third, 299 GPS locations of known savannah and terra firme forest land-cover 
classes from archaeological research databases across the basin30,31; fourth, 191 GPS 
locations from permanent long-term forest inventory plots of the African Tropical 
Rainforest Observation Network, mostly from terra firme forest32, retrieved from 
the ForestPlots database33,34; fifth, 229 GPS data points from terra firme forest or 
savannah locations in and around Lomami National Park (R. Batumike, G. Imani 
and A. Cuní-Sanchez, personal communication); sixth, 24 published savannah data 
points in and around Lomami NP35; seventh, 23 published locations of savannah, 
terra firme forest and palm- or hardwood-dominated peat swamp forest in DRC11; 
eighth, 296 data points from Google Earth for unambiguous savannah and water 
sites (middle of lakes or rivers) distributed across the region.

We used nine remote-sensing products to map peat-associated vegetation 
(Supplementary Fig. 1). Eight of these are identical to those used by ref. 9: three 
optical products (Landsat 7 ETM + bands 5 (SWIR 1), 4 (NIR) and 3 (Red)); three 
L-band synthetic-aperture radar products (ALOS PALSAR HV, HH and HV/HH); 
and two topographic products (SRTM DEM (digital elevation model) void-filled 
with ASTER GDEM v.2 data and slope; acquisition date 2000). To this, we added a 
HAND-index (height above nearest drainage point), which significantly improved 
model performances (median MCC 79.7%, compared with 77.8% or 75.6% for just 
DEM or HAND alone, respectively; P < 0.001).

HAND was derived from the SRTM DEM with the algorithm from ref. 36, using 
the HydroSHEDS global river network at 15 s resolution as reference product37. 
Alternative NASADEM- or MERIT DEM-derived38–40 combinations of DEM, 
HAND and slope were tested with an initial subset of data in R, while keeping 
all other remote-sensing products the same (median MCC: 79.0% and 75.1%, 
respectively), but did not significantly improve model performance compared with 
SRTM-derived products (80.9% median MCC; P < 0.001).

The Landsat bands are pre-processed, seamless cloud-free mosaics for ROC 
(composite of three years, 2000, 2005 and 2010) and DRC (composite of six years, 
2005–2010)41. These mosaics performed better than more recent basin-wide 
automated cloud-free Sentinel-2 mosaics that we developed (bands 5, 8A and 
11; composite of five years, 2016–2020), probably because they contain less 
directional reflectance artefacts (the median MCC of 80.9% for the pre-processed 
Landsat mosaics is significantly higher than the 78.1% for the Sentinel-2 mosaics, 
P < 0.005).

The ALOS PALSAR radar bands are mosaics of mean values of annual JAXA 
composites for the years 2007–2010 (ref. 9). More recent radar data (ALOS-2 
PALSAR-2 HV, HH, HV/HH; 2015–2017) did not significantly improve model 
performances (median MCC 80.9% and 80.6%, respectively; P < 0.01). All 
remote-sensing products were resized to a common 50 m grid using a cubic 
convolution resampling method.

We then tested which classification algorithm to use, as more sophisticated 
algorithms might improve overall accuracy against our training dataset but might 
also reduce regional accuracy of the map in areas far from test data, critical in this 
case given large areas of the central Congo peatland region remain unsampled.

Three supervised classification algorithms were tested in order of increasing 
complexity: ML, support-vector machine (SVM) and RF. We assessed each 
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classifier using both a random and spatial cross-validation (CV) approach42–44. 
Random CV was implemented using stratified two-thirds Monte Carlo selection, 
whereby 1,000 times, we randomly selected two-thirds of all data points per class as 
training data, to be evaluated against the remaining one-third per class as  
testing data.

Spatial CV was implemented by grouping all transects data points in four 
distinct hydro-geomorphological regions: (1) transects perpendicular to the 
black-water Likouala-aux-Herbes River (n = 179 data points); (2) transects 
perpendicular to the white-water Ubangi River (n = 113); (3) transects 
perpendicular to the Congo River, intermediate between black and white water 
(n = 123); and (4) transects perpendicular to the black-water Ruki, Busira 
and Ikelemba rivers, plus other nearby transects (collectively named the Ruki 
group; n = 258). To each group we added ground-truth data points from other 
non-transect data sources (Supplementary Table 2) that belonged to the same 
map regions (n = 82, 27, 20 and 113, respectively). We then tested 1,000 times 
how well each classifier performs in each of the four regions when trained only on 
a stratified two-thirds Monte Carlo selection of the remaining data points (data 
points from the three other regional transect groups) plus ground-truth data points 
not associated with or near any transect group (n = 821; for example, the savannah 
and terra firme forest data points in Lomami National Park in DRC, which are far 
(> 300 km) from any transect group).

Model performance was based on MCC for binary peat/non-peat predictions 
(hardwood- and palm-dominated peat swamp forest classes combined into one 
peat class; water, savannah and non-peat-forming forest combined into one 
non-peat class). We compared MCC, rather than popular metrics such as Cohen’s 
kappa, F1 score or accuracy, because it is thought to be the most reliable evaluation 
metric for binary classifications45,46. We also computed BA from random CV 
to compare with the first-generation map. While less robust than MCC, BA is 
independent of imbalances in the prevalence of positives/negatives in the data, thus 
allowing better comparison between classifiers trained on different datasets16. The 
best estimate of each accuracy metric or area estimate per model or region is the 
median value of 1,000 runs, alongside a 95% CI.

In the case of SVM and RF, random CV models were implemented in 
Google Earth Engine (GEE)47 using all nine remote-sensing products. However, 
because ML is currently not supported by GEE, random CV with this algorithm 
was implemented in IDL-ENVI software (version 8.7–5.5), using a principal 
component analysis to reduce the nine remote-sensing products to six uncorrelated 
principal components to reduce computation time. All spatial CV models were 
implemented in R (superClass function from the RStoolbox package, version 
0.2.6), with principal component analysis also applied in the case of ML only. All 
RF models were trained using 500 trees, with three input products used at each 
split in the forest (the default, the square root of the number of variables). All 
SVM models were implemented with a radial basis function kernel, with all other 
parameters set to default values.

Comparison of the ML, SVM and RF models with the model performance of 
ref. 9, using balanced accuracy from random CV, shows improved results only in 
the case of the ML classifier (Supplementary Table 3). Comparing MCC using the 
spatial CV approach, we found that the ML algorithm is also most transferable to 
regions for which we lack training data. While RF gives slightly better MCC with 
random CV, when no regions are omitted, spatial CV shows particularly poor 
predictive performance of this algorithm for the Congo and Ruki regions when 
trained on data from the other regions. SVM has the lowest MCC of all three 
classifiers with random CV and performs worst of all three in the Congo region 
with spatial CV.

In addition, applying spatial CV to the largely interfluvial basin region (ROC 
transects; n = 401) and the largely river-influenced region (DRC transects; n = 540) 
also shows RF performs poorly (Supplementary Table 3). This further supports 
selecting the ML algorithm to produce our second-generation peat-extent 
map of the central Congo peatlands. The final peatland-extent estimate is then 
obtained as the median value (alongside 95% CI) of the combined hardwood- and 
palm-dominated peat swamp forest extent from 1,000 ML runs, each time trained 
with two-thirds of the ground-truth data.

Modelling peat thickness. A map of distance from the peatland margins was 
developed in GEE using the median ML peat probability map, the ML map with a 
50% peat probability threshold (>500 hardwood- or palm-dominated peat swamp 
predictions out of 1,000 runs). For each peat pixel in this binary classification, a 
cost function was used to calculate the Euclidean distance to the nearest non-peat 
pixel after speckle and noise were removed using a 5 × 5 squared-kernel majority 
filter. Using this distance map, transects were found to have markedly different 
relationships between peat thickness and distance from the peatland margin, that 
is, different slopes (n = 18; P < 0.001; Extended Data Fig. 4). The modest linear fit 
(R2 = 41.0%; RMSE = 1.21 m) cautions against a uniform regression between peat 
thickness and distance from the margin across the basin.

Instead, we developed a spatially explicit RF regression model to predict peat 
thickness, derived from 14 remotely sensed potential covariates that may explain 
variation in peat thickness. These 14 variables included the nine optical, radar and 
topographic products used in the peatland-extent analysis, as well as distance from 
the peatland margin, distance from the nearest drainage point (same reference 

network as for HAND)37, precipitation seasonality48, climatic water balance 
(mean annual precipitation48 minus mean annual potential evapotranspiration49) 
and live woody above-ground biomass50. Ten of these variables were found to be 
significantly correlated with peat thickness (Kendall’s τ, P < 0.01): all three optical 
bands, all three radar bands, distance from the peatland margin, distance from 
the nearest drainage point, precipitation seasonality and climatic water balance. 
Applying stepwise backwards selection, we tested combinations of these ten 
predictors by each time dropping one predictor out of the model in order from 
low to high variable importance, selecting as the best model the one with highest 
median R2 and lowest median RMSE obtained from 100 random (two-thirds) 
CVs. The importance of each variable was assessed by calculating mean decrease 
impurity, the total decrease in the residual sum of squares of the regression after 
splitting on that variable, averaged over all decision trees in the RF. Median mean 
decrease impurity was calculated for each variable on the basis of 100 random 
(two-thirds) CVs of the overall model containing all ten significant predictors.

The best model contained four predictors: distance from the peatland margin, 
distance to the nearest drainage point, climatic water balance (all positively 
correlated with peat thickness; Kendall’s τ coefficient = 0.49, 0.15 and 0.13, 
respectively; P < 0.001 for all) and precipitation seasonality (negatively correlated 
with thickness; Kendall’s τ = −0.11; P < 0.01); see Extended Data Fig. 6 for their 
spatial variability.

The RF regression was implemented in GEE with 500 trees and all other 
parameters set to default values. Predictor variables were resampled to 50 m 
resolution. As training data, we included all LOI-verified and corrected 
pole-method thickness measurements that fell within the masked map of >50% 
peat probability (n = 463), including thickness >0 and <0.3 m from non-peat sites 
that could improve predictions of shallow peat deposits near the margins (n = 12).

Our final RF model (R2 = 93.4%;, RMSE = 0.42 m) had consistently smaller 
residuals compared with a multiple linear regression model containing the same 
four predictors with interaction effects (adjusted R2 = 73.6%;, RMSE = 0.80 m; 
Extended Data Fig. 5). It also performed better when testing out-of-sample 
performance, using 100 random two-thirds CVs of training data (median 
R2 = 82.2%, RMSE = 0.68 m and median adjusted R2 = 73.6%, RMSE = 0.85 m for RF 
model and multiple linear regression, respectively).

For uncertainty on our thickness predictions, we first estimated area 
uncertainty by creating 100 different maps of distance from the peat margin by 
randomly selecting (with replacement) a minimum peat probability threshold >0% 
and <100%, removing speckle and noise, and re-calculating the closest distance 
to the nearest non-peat pixel. We then combined the 100 distance maps each time 
with the three other selected predictors (precipitation seasonality, climatic water 
balance and distance from nearest drainage point) as input in an RF model to 
develop 100 different peat-thickness maps. For these model runs, we included all 
available thickness measurements (>0 m) that fell within each specific distance 
map. Each output map was masked to an area ≥0.3 m thickness, consistent with our 
peat definition. A map of median peat thickness (Fig. 4a) and relative uncertainty 
(± half the width of the 95% CI as percentage of the median; Fig. 4b) was then 
calculated for each pixel on the basis of the 100 available thickness estimates.

Carbon-stock estimates. We mapped carbon density across the central Congo 
Basin in GEE by applying 20 bootstrapped thickness–carbon regressions that 
were normally distributed around the best fit (Extended Data Fig. 7) to the 100 
peat-thickness maps from the RF regression model, generating a map of median 
carbon density out of 2,000 estimates (Fig. 4a), together with relative uncertainty 
(± half the width of the 95% CI as percentage of the median; Fig. 4b).

Total peat carbon stocks were computed in GEE by summing carbon density 
(Mg ha−1) over all 50 m grid squares defined as peat. To assess uncertainty 
around this estimate, we again combined the 100 peat-thickness maps 
(uncertainty from area and thickness) with 20 bootstrapped thickness–carbon 
regressions (uncertainty from carbon density, including bulk density and carbon 
concentration). We thus obtained 2,000 peat carbon-stock estimates for the total 
central Congo Basin peatland complex, which were used to estimate the mean, 
median and 95% CI (Extended Data Fig. 8a).

Regional carbon-stock estimates were similarly obtained for each sub-national 
administrative region (departments in ROC and provinces in DRC; Extended 
Data Fig. 2), as well as national-level protected areas (national parks and nature/
biosphere/community reserves)51 and logging52,53, mining54,55 and palm oil56–58 
concessions (Extended Data Figs. 9 and 10). As hydrocarbon concessions cover 
almost the whole peatlands area24,26, they cover almost 100% of the central Congo 
peat carbon stocks.

Sensitivity analysis was performed by bootstrapping the area, thickness or 
carbon-density component, while keeping the others constant (Extended Data Fig. 
8b). For area, we bootstrapped 100 randomly selected peatland area estimates; for 
thickness, 100 randomly selected two-thirds subsets of all thickness measurements; 
for carbon density, 20 normally distributed regression equations from the 
bootstrapped thickness–carbon relationship.

Data availability
All map results from this study are available for download as raster files from 
https://congopeat.net/maps/. The supporting ground-truth data, peat-thickness 

NATuRE GEOSCIENCE | www.nature.com/naturegeoscience

https://congopeat.net/maps/
http://www.nature.com/naturegeoscience


ArticlesNature GeoscieNce

measurements and carbon-density measurements are available from https://
github.com/CongoPeat/Peatland-mapping.git. The remote-sensing datasets are 
available for download from https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm 
(ALOS PALSAR and ALOS-2 PALSAR-2 25 m HV and HH data), http://osfac.net/ 
(OSFAC ROC and DRC 60 m Landsat ETM + bands 5, 4 and 3 mosaics) and http://
earthexplorer.usgs.gov/ (SRTM DEM 1-arc second and ASTER GDEM v2 1-arc 
second data).

Code availability
The IDL-ENVI script to run the maximum likelihood peatland-extent model is 
available from https://github.com/CongoPeat/Peatland-mapping.git. The scripts 
to run the peat-thickness model and carbon-stock calculations are available on 
Google Earth Engine: https://code.earthengine.google.com/?accept_repo=users/
gybjc/Central_Congo_Peatlands_2022. All R code is available from the 
corresponding author upon request.
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Extended Data Fig. 1 | Spatial overview of 1,736 ground-truth datapoints across the central Congo basin study area, grouped by six landcover classes. 
Only the palm-dominated and hardwood-dominated peat swamp forest classes (e, f) are associated with the presence of peat. Terra firme forest (c) 
and non-peat forming seasonally inundated forest (d) are combined into a single non-peat forming forest class when running classification models. The 
RGB baselayer of Landsat ETM+ 7 (SWIR 1, NIR and Red bands) reflects different forest types (shades of green), open savannah (pink), agricultural land 
(yellow) and open water (blue).
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Extended Data Fig. 2 | Estimated peatland area, peat thickness, carbon density and carbon stocks per administrative region. All values are regional 
means (± s.d.) of the median peat thickness and carbon density maps; or median estimates (with 95% confidence interval in parentheses) for total 
peatland area and peat carbon stock. For regional area estimates without confidence interval, the median peatland map (> 50% probability) was used. 
Sub-national administrative regions are provinces (DRC) or departments (ROC). Marginal peat predictions in other administrative regions (Kasaï, Tshopo, 
Kwilu, Nord-Ubangi in DRC; Cuvette-Ouest in ROC) are included in total country estimates, but not listed separately.
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Extended Data Fig. 3 | Relationship between peat thickness estimated using the pole-method and laboratory-verified peat thickness using 
Loss-On-Ignition (LOI) across four regional transect groups. Mean pole-method offset is significantly higher in the largely river-influenced transects 
in DRC (0.94 m, red line) than in the mostly interfluvial basin transects in ROC (0.48 m, blue line; P < 0.001). No significant differences were found 
between either the Likouala-aux-Herbes and Ubangi transects in ROC, or between the Congo and Ruki transects in DRC. Best-fitting line: corrected peat 
thickness = − 0.1760 + 0.8626 x (pole-method thickness) − 0.3284 x (country); n = 93, adj-R2 = 0.95; P < 0.001. Country is dummy coded as: ROC (0) and 
DRC (1). Shaded grey shows 95% confidence intervals. Outliers (n = 3) with > 4x the mean Cook’s distance are excluded from the analysis.
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Extended Data Fig. 4 | Relationships between field-measured peat thickness (LOI + corrected pole-method measurements) and distance from the 
peatland margin. Distance from the peatland margin is calculated as the shortest distance to a non-peat pixel in any direction, based on a smoothed 
median Maximum Likelihood map of peatland extent (> 50% peat probability threshold). Transects are ordered by increasing regression slope (in m km−1; 
upper left corner of each panel), with colours indicating the four transect regions. Note that the horizontal axes are different for each panel. Shaded grey 
shows 95% confidence intervals around each regression.
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Extended Data Fig. 5 | Comparison of observed and predicted values in two peat thickness models. a, Multiple linear regression model with interaction 
effects (adj-R2 = 73.6%, RMSE = 0.80 m). b, Random Forest regression model (R2 = 93.4%, RMSE = 0.42 m). Both models are trained and validated against 
463 field measurements and include the same four predictor variables: distance from the peatland margin, precipitation seasonality, climatic water 
balance, and distance from the nearest drainage point. Both panels show 277 aggregated means only to account for duplicates in observed values. The 
black lines indicate the 1:1 relationship.
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Extended Data Fig. 6 | Spatial variability of the four predictor variables retained in the final Random Forest regression model of peat thickness.  
a, Distance from the peatland margin (km). b, Precipitation seasonality (coefficient of variation). c, Climatic water balance (precipitation minus potential 
evapotranspiration; mm). d, Distance from the nearest drainage point (km). All maps have been masked to the smoothed median Maximum Likelihood 
peatland extent (> 50% peat probability). Black lines represent national boundaries; grey lines represent sub-national administrative boundaries.
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Extended Data Fig. 7 | Relationship between peat thickness and carbon density per unit area. Dots are coloured by transect region. Best-fitting line: 
carbon density (in Mg ha−1) = − 942.4 + 2088.4 x SqRt(peat thickness, in m); n = 80, R2 = 0.86; P < 0.001. Shaded grey shows the 95% confidence 
interval. 20 bootstrapped regressions, normally distributed around the best-fitting line, were used to include this uncertainty when scaling peat thickness 
to carbon density estimates.
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Extended Data Fig. 8 | Distribution and sensitivity of peat carbon stock estimates in the central Congo Basin peatland complex. a, Distribution of 2,000 
peat carbon stock estimates, obtained by combining 100 random peat probability thresholds in the peatland extent model and computing the associated 
RF peat thickness map, with 20 normally-distributed equations from the bootstrapped peat thickness-carbon density regression. Median, 29.0 Pg C; mean, 
29.1 Pg C; 95% CI, 26.3–32.2 Pg C. b, Sensitivity analysis by in turn bootstrapping peat area estimates (n = 100), peat thickness measurements (n = 100), 
or carbon density regressions (n = 20), whilst keeping the other components constant. Central lines show the medians, box limits show the upper and 
lower quartiles, and the vertical lines show maximum and minimum values. Dots represent potential outlying values.
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Extended Data Fig. 9 | Distribution of national protected areas and industrial concessions across the central Congo Basin peatland complex. The base 
map shows belowground peat carbon density (shaded grey; Fig. 4a), overlaid with protected areas at national-level (national parks and nature/biosphere/
community reserves; adapted with permission from ref. 51), or industrial logging (adapted with permission from refs. 52,53), mining (adapted with permission 
from refs. 54,55), and palm oil (adapted with permission from refs. 56–58) concessions. Black lines represent national boundaries; grey lines represent 
sub-national administrative boundaries. Images from refs. 52–55 and 57 adapted under a CC BY licence.
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Extended Data Fig. 10 | Estimated peatland area, peat thickness, carbon density and carbon stocks in industrial concessions and protected areas. 
Estimates are calculated for protected areas at national-level (national parks and nature/biosphere/community reserves);51 or for industrial logging52,53, 
mining54,55, and palm oil56–58 concessions combined (see Extended Data Fig. 9). All values are means (± s.d.) of the median peat thickness and carbon 
density maps, or median estimates for total peatland area and peat carbon stock. Percentages show the proportion of total peatland area or peat carbon 
stock in ROC, DRC and combined (Extended Data Fig. 2) that is found in either protected areas or industrial logging/mining/palm oil concessions.
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